Source code for poutyne.framework.callbacks.policies

"""
Copyright (c) 2022 Poutyne and all respective contributors.

Each contributor holds copyright over their respective contributions. The project versioning (Git)
records all such contribution source information.

This file is part of Poutyne.

Poutyne is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

Poutyne is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with Poutyne. If not, see
<https://www.gnu.org/licenses/>.
"""

import contextlib
from collections import OrderedDict
from itertools import islice, chain
from math import cos, pi
from typing import Dict, List, Tuple, Optional

try:
    import matplotlib.pyplot as plt
except ImportError:
    plt = None

from .callbacks import Callback


###############################################################################
# Lazy parameter spaces
# A space is just an iterable
[docs]class linspace: """ A lazy linear parameter space that goes from ``start`` to ``end`` in ``steps`` steps. Args: start (int): the start point. end (int): the end point. steps (int): the number of steps between start and end. Example: >>> list(linspace(0, 1, 3)) [0.0, 0.5, 1.0] """ def __init__(self, start: int, end: int, steps: int): self.start = start self.end = end self.steps = steps def _progress(self, i): return i / (self.steps - 1) def __iter__(self): return (self.start + self._progress(i) * (self.end - self.start) for i in range(self.steps))
[docs]class cosinespace: """ A lazy cosine parameter space that goes from ``start`` to ``end`` in ``steps`` steps. Args: start (int): the start point. end (int): the end point. steps (int): the number of steps between start and end. Example: >>> list(cosinespace(0, 1, 3)) [0.0, 0.5, 1.0] """ def __init__(self, start: int, end: int, steps: int): self.start = start self.end = end self.steps = steps def _progress(self, i): return i / (self.steps - 1) def __iter__(self): return (self.end + (self.start - self.end) * (1 + cos(self._progress(i) * pi)) / 2 for i in range(self.steps))
###############################################################################
[docs]class Phase: """ Defines how to configure an optimizer. For each train step it returns a dictionary that contains the configuration for the optimizer. Args: lr (List[float], optional): a configuration space for the learning rate. momentum (List[float], optional): a configuration space for the momentum. """ def __init__(self, *, lr: Optional[float] = None, momentum: Optional[float] = None): if lr is None and momentum is None: raise ValueError("You must specify lr and/or momentum.") self.configuration = OrderedDict() if lr is not None: self.configuration["lr"] = lr if momentum is not None: self.configuration["momentum"] = momentum def __iter__(self): names = list(self.configuration.keys()) values = self.configuration.values() for values in zip(*self.configuration.values()): yield dict(zip(names, values)) def __repr__(self): return "\n".join( [ "Phase:", *[f" {name}: {val}" for name, val in self.configuration.items()], ] ) def plot(self, param_name: str = "lr", ax=None): """ Plot the phase for the given `param_name`. Args: param_name (str, optional): the name of the parameter to plot. ax (~matplotlib.pyplot.axis, optional): a matplotlib axis to plot on, if given. Returns: The matplotlib axis. """ # pylint: disable=import-error if ax is None: _fig, ax = plt.subplots() ax.plot(list(self.configuration[param_name])) ax.set_xlabel("steps") ax.set_ylabel(param_name) return ax
############################################################################### # complex policies build from simple phases # pylint
[docs]def one_cycle_phases( steps: int, lr: Tuple[float, float] = (0.1, 1), momentum: Tuple[float, float] = (0.95, 0.85), finetune_lr: float = 0.01, finetune_fraction: float = 0.1, ) -> List[Phase]: """ The "one-cycle" policy as described in the paper `Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates <https://arxiv.org/abs/1708.07120>`_. You might want to read the paper and adjust the parameters. Args: steps (int): the total number of steps to take. lr (Tuple[float, float]): tuple for the triangular learning rate (start, middle). momentum (Tuple[float, float]): tuple for the triangular momentum (start, middle). finetune_lr (float): target learning rate for the final fine tuning. Should be smaller than `min(lr)`. finetune_fraction (float): fraction of steps used for the fine tuning. Must be between 0 and 1. Returns: A list of configured :class:`~poutyne.Phase` instances. References: `Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates <https://arxiv.org/abs/1708.07120>`_ """ steps_annealing = int(steps * finetune_fraction) steps_up = (steps - steps_annealing) // 2 steps_down = steps - steps_annealing - steps_up return [ Phase( lr=linspace(lr[0], lr[1], steps_up), momentum=linspace(momentum[0], momentum[1], steps_up), ), Phase( lr=linspace(lr[1], lr[0], steps_down), momentum=linspace(momentum[1], momentum[0], steps_down), ), Phase( lr=linspace(lr[0], finetune_lr, steps_annealing), momentum=linspace(momentum[0], momentum[0], steps_annealing), ), ]
[docs]def sgdr_phases( base_cycle_length: int, cycles: int, lr: Tuple[float, float] = (1.0, 0.1), cycle_mult: int = 2, ) -> List[Phase]: """ The "SGDR" policy as described in the paper `SGDR: Stochastic Gradient Descent with Warm Restarts <https://arxiv.org/abs/1608.03983>`_. Note the total number of steps is calculated like this: `total_steps = sum(base_cycle_length * (cycle_mult ** i) for i in range(cycles))` You might want to read the paper and adjust the parameters. Args: base_cycle_length (int): number of steps for the first cycle. cycles (int): the number of repetitions. lr (Typle[float, float]): tuple for the learning rate for one cycle: (start, end). cycle_mult (float): multiply the last cycle length with this every cycle. The length of a cycle grows exponentially. Returns: A list of configured :class:`~poutyne.Phase` instances. References: `SGDR: Stochastic Gradient Descent with Warm Restarts <https://arxiv.org/abs/1608.03983>`_ """ steps = [base_cycle_length * (cycle_mult**i) for i in range(cycles)] return [Phase(lr=cosinespace(lr[0], lr[1], step)) for step in steps]
###############################################################################
[docs]class OptimizerPolicy(Callback): """ Combine different :class:`~poutyne.Phase` instances in an :class:`~poutyne.OptimizerPolicy` and execute the policies in a row. Args: phases (List[~poutyne.Phase]): A list of :class:`~poutyne.Phase` instances. initial_step (int): The step to start the policy in. Used for restarting. """ def __init__(self, phases: List, *, initial_step: int = 0): super().__init__() self.phases = phases self.current_step = initial_step self.phases_iter = iter(self) def on_train_batch_begin(self, batch_number: int, logs: Dict): # Don't do anything when we run out of phases. with contextlib.suppress(StopIteration): spec = next(self.phases_iter) self._update_optimizer(spec) def __iter__(self): space_iter = islice(chain.from_iterable(self.phases), self.current_step, None) for param_dict in space_iter: self.current_step += 1 yield param_dict def all_steps(self) -> List[Dict]: """ Return the list of dictionaries of configurations for all steps. This does not advance the current_step count. Returns: A list of dictionaries of all the parameters for each step. """ return chain.from_iterable(self.phases) def __repr__(self): return f"OptimizerPolicy:\n phases: {self.current_step}\n current_step: {len(self.phases)}" def _update_optimizer(self, param_dict: Dict): for param_name, param_value in param_dict.items(): for group in self.model.optimizer.param_groups: group[param_name] = param_value def plot(self, param_name: str = "lr", ax=None): """ Visualize all :class:`~poutyne.Phase`s of this :class:`~poutyne.OptimizerPolicy`. Args: param_name (str, optional): the name of the parameter to plot. ax (~matplotlib.pyplot.axis): a matplotlib axis to plot on, if given. Returns: The matplotlib axis. """ # pylint: disable=import-error if ax is None: _fig, ax = plt.subplots() values = [step[param_name] for step in self.all_steps()] ax.plot(values) ax.set_ylabel(param_name) ax.set_xlabel("steps") return ax